6 research outputs found

    A Compact Minimal Space Whose Cartesian Square Is Not Minimal

    Get PDF
    A compact metric space X is called minimal if it admits a minimal homeomorphism; i.e. a homeomorphism h:X→ X such that the forward orbit {hn(x):n=1, 2, ...} is dense in X, for every x ∈ X. In my talk I shall outline a construction of a family of 1-dimensional minimal spaces from A compact minimal space Y such that its square YxY is not minimal whose existence answer the following long standing problem in the negative. Problem. Is minimality preserved under Cartesian product in the class of compact spaces? Note that for the fixed point property this question had been resolved in the negative already 50 years ago by Lopez, and a similar counterexample does not exist for flows, as shown by Dirbák

    Poloidal-toroidal decomposition in a finite cylinder. II. Discretization, regularization and validation

    Full text link
    The Navier-Stokes equations in a finite cylinder are written in terms of poloidal and toroidal potentials in order to impose incompressibility. Regularity of the solutions is ensured in several ways: First, the potentials are represented using a spectral basis which is analytic at the cylindrical axis. Second, the non-physical discontinuous boundary conditions at the cylindrical corners are smoothed using a polynomial approximation to a steep exponential profile. Third, the nonlinear term is evaluated in such a way as to eliminate singularities. The resulting pseudo-spectral code is tested using exact polynomial solutions and the spectral convergence of the coefficients is demonstrated. Our solutions are shown to agree with exact polynomial solutions and with previous axisymmetric calculations of vortex breakdown and of nonaxisymmetric calculations of onset of helical spirals. Parallelization by azimuthal wavenumber is shown to be highly effective

    Spectral method for matching exterior and interior elliptic problems

    Full text link
    A spectral method is described for solving coupled elliptic problems on an interior and an exterior domain. The method is formulated and tested on the two-dimensional interior Poisson and exterior Laplace problems, whose solutions and their normal derivatives are required to be continuous across the interface. A complete basis of homogeneous solutions for the interior and exterior regions, corresponding to all possible Dirichlet boundary values at the interface, are calculated in a preprocessing step. This basis is used to construct the influence matrix which serves to transform the coupled boundary conditions into conditions on the interior problem. Chebyshev approximations are used to represent both the interior solutions and the boundary values. A standard Chebyshev spectral method is used to calculate the interior solutions. The exterior harmonic solutions are calculated as the convolution of the free-space Green's function with a surface density; this surface density is itself the solution to an integral equation which has an analytic solution when the boundary values are given as a Chebyshev expansion. Properties of Chebyshev approximations insure that the basis of exterior harmonic functions represents the external near-boundary solutions uniformly. The method is tested by calculating the electrostatic potential resulting from charge distributions in a rectangle. The resulting influence matrix is well-conditioned and solutions converge exponentially as the resolution is increased. The generalization of this approach to three-dimensional problems is discussed, in particular the magnetohydrodynamic equations in a finite cylindrical domain surrounded by a vacuum
    corecore